skip to main content


Search for: All records

Creators/Authors contains: "Samra, Jenna"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The Airborne Infrared Spectrometer (AIR-Spec) offers an unprecedented opportunity to explore the near-infrared (NIR) wavelength range. It has been flown at two total solar eclipses, in 2017 and 2019. The wavelength range of the much-improved instrument on the second flight (2019 July 2) was shifted to cover two density-sensitive lines from Sxi. In this paper we study detailed diagnostics for temperature, electron density, and elemental abundances by comparing results from AIR-Spec slit positions above the east and west limbs with those from Hinode/EIS, the PolarCam detector, and SDO/AIA. We find very good agreement in the electron densities obtained from the EIS EUV line ratios, those from the NIR Sxiratio, and those obtained from the polarized brightness PolarCam measurements. Electron densities ranged from logNe[cm−3] = 8.4 near the limb to 7.2 atR0= 1.3. EIS spectra indicate that the temperature distribution above the west limb is near isothermal at around 1.3 MK, while that on the east has an additional higher-Tcomponent. The AIR-Spec radiances in Sixand Sxi, as well as the AIA data in the 171, 193, and 211 Å bands, are consistent with the EIS results. EIS and AIR-Spec data indicate that the sulfur abundance (relative to silicon) is photospheric in both regions, confirming our previous results of the 2017 eclipse. The AIA data also indicate that the absolute iron abundance is photospheric. Our analysis confirms the importance of the diagnostic potential of the NIR wavelength range and that this important wavelength range can be used reliably and independently to determine coronal plasma parameters.

     
    more » « less
  2. Abstract

    The Airborne Infrared Spectrometer (AIR-Spec) was commissioned during the 2017 total solar eclipse, when it observed five infrared coronal emission lines from a Gulfstream V research jet owned by the National Science Foundation and operated by the National Center for Atmospheric Research. The second AIR-Spec research flight took place during the 2019 July 2 total solar eclipse across the south Pacific. The 2019 eclipse flight resulted in seven minutes of observations, during which the instrument measured all four of its target emission lines: Sxi1.393μm, Six1.431μm, Sxi1.921μm, and Feix2.853μm. The 1.393μm Sxiline was detected for the first time, and probable first detections were made of Sixi1.934μm and Fex1.947μm. The 2017 AIR-Spec detection of Feixwas confirmed and the first observations were made of the Feixline intensity as a function of solar radius. Telluric absorption features were used to calibrate the wavelength mapping, instrumental broadening, and throughput of the instrument. AIR-Spec underwent significant upgrades in preparation for the 2019 eclipse observation. The thermal background was reduced by a factor of 30, providing a 5.5× improvement in signal-to-noise ratio, and the postprocessed pointing stability was improved by a factor of 5 to <10″ rms. In addition, two imaging artifacts were identified and resolved, improving the spectral resolution and making the 2019 data easier to interpret.

     
    more » « less
  3. Abstract

    On 2017 August 21, the Airborne Infrared Spectrometer (AIR-Spec) observed the total solar eclipse at an altitude of 14 km from aboard the NSF/NCAR Gulfstream V research aircraft. The instrument successfully observed the five coronal emission lines that it was designed to measure: Six1.431μm, Sxi1.921μm, Feix2.853μm, Mgviii3.028μm, and Siix3.935μm. Characterizing these magnetically sensitive emission lines is an important first step in designing future instruments to monitor the coronal magnetic field, which drives space weather events, as well as coronal heating, structure, and dynamics. The AIR-Spec instrument includes an image stabilization system, feed telescope, grating spectrometer, and slit-jaw imager. This paper details the instrument design, optical alignment method, image processing, and data calibration approach. The eclipse observations are described and the available data are summarized.

     
    more » « less
  4. Abstract. MethaneAIR is the airborne simulator of MethaneSAT, an area-mapping satellite currently under development with the goal of locating and quantifying large anthropogenic CH4 point sources as well as diffuse emissions at the spatial scale of an oil and gas basin. Built to closely replicate the forthcoming satellite, MethaneAIR consists of two imaging spectrometers. One detects CH4 and CO2 absorption around 1.65 and 1.61 µm, respectively, while the other constrains the optical path in the atmosphere by detecting O2 absorption near 1.27 µm. The high spectral resolution and stringent retrieval accuracy requirements of greenhouse gas remote sensing in this spectral range necessitate a reliable spectral calibration. To this end, on-ground laboratory measurements were used to derive the spectral calibration of MethaneAIR, serving as a pathfinder for the future calibration of MethaneSAT. Stray light was characterized and corrected for through fast-Fourier-transform-based Van Cittert deconvolution. Wavelength registration was examined and found to be best described by a linear relationship for both bands with a precision of ∼ 0.02 spectral pixel. The instrument spectral spread function (ISSF), measured with fine wavelength steps of 0.005 nm near a series of central wavelengths across each band, was oversampled to construct the instrument spectral response function (ISRF) at each central wavelength and spatial pixel. The ISRFs were smoothed with a Savitzky–Golay filter for use in a lookup table in the retrieval algorithm. The MethaneAIR spectral calibration was evaluated through application to radiance spectra from an instrument flight over the Colorado Front Range. 
    more » « less